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Abstract—In this paper, we present a new algorithm for
blind/no-reference image quality assessment (BIQA/NR-IQA).
Most existing measures are “opinion-aware”, demanding human
opinion scored images to map image features to them. The task of
obtaining human scores of images is, however, commonly thought
to be uneconomical, and thus we focus on “opinion free” (OF)
quality metrics in this research. By integrating local and global
features, this paper develops a learning-based BIQA approach
with three steps by combining local and global features together.
In the first step of extracting local features, we use the quality
aware clustering with the centroid of each quality level trained by
K-means, while we in the second step compute the global features
based on the natural scene statistics. Finally, the third step uses
the SVR to train a regression module from the above-mentioned
local and global features to derive the overall image quality score.
Experimental results on LIVE, TID2008, CSIQ, and TID2013
databases validate the effectiveness of our proposed metric (a
general framework) as compared to popular no-, reduced- and
full-reference IQA approaches.

Keywords—Image quality assessment (IQA), local features, K-
means, global features, support vector regression (SVR)

I. INTRODUCTION

Many efforts have been devoted to the study of image
quality assessment for the ubiquitous use of digital images
and networked handheld devices since last decade. It has
merits of promoting qualities of digital images, which usually
deteriorated by distortions like commonly encountered JPEG,
JPEG2000, Gaussian blur, white noise, and etc. With the
launch of high definition television (HDTV), Internet protocol
IV (IPTV), and rapid development of internet service (Face-
book, Google, Flicker, etc), the demanding of end user for
more satisfactory quality of experience (QoE) increases. Better
visual experience should be delivered to consumers by using
objective measures of image quality.

Mentioning objective image quality assessment (IQA), we
first come to full-reference (FR) IQA, which requires not only
the distorted image, but also the ‘clean’ one. The distorted
image is assessed with respect to the distance between itself
and the associated ‘clean’ image. But the pristine images are
usually not accessible in reality, so no-reference (NR) IQA is
born, working under the situation that only information needed
is from distorted images. As a tradeoff between FR-IQA
and NR-IQA, there is reduced-reference (RR) IQA existing
between them, with partial information of the reference image
is required. A state-of-the-art RR-IQA algorithm maintains
a good balance between the amount of RR features and the
effectiveness of image quality prediction.

NR-IQA is believed to be the most tough category in
object quality assessment. Current blind image quality as-
sessment (BIQA) has two sorts: distortion-specific method-
s and distortion-independent (general-purpose) methods. In
distortion-specific methods, Wang et al., Gastaldo and Zunino,
Brandão et al. proposed distortion specific BIQA algorithms
for JPEG compression artifacts in [1], [2] and [3], by extracting
features like blockiness and DCT coefficient statistics. Marzil-
iano et al. and Sheikh et al. solved JPEG2000 compressed
image quality by using blur, ringing, and wavelet coefficient
statistics, as referred in [4] and [5]. In [6], the authors assessed
contrast-changed images taking into account the information
residual between the input and distorted images as well as the
first four order statistics of the distorted image histogram. In
[7], the authors blindly predicted the visual quality of tone-
mapped images based on the concept of details preservation.
In [8], the authors estimated the noise level and assessed noised
images without the help of reference images. In [9], the authors
resorted to the free energy based brain theory to measure the
multiple distortions.

On the other hand, distortion-independent methods are
more general for the application that the artifact information
is unknown. The works in [10]-[18] are devoted to this
problem successively. Sadd et al. proposed BLIINDS in [11],
by claiming that image distortions will change the regularity
of extracted features in the DCT domain. In [12], Mittal et al.
released BRISQUE on the basis of the highly correlation of
different features in the domain with human perception. Apart
from the natural scene statistics (NSS) based IQA models,
there is another group of training based methods. In [13], the
authors integrated two RR-IQA models [19] and [20] to derive
the effective referenceless quality measure. Ye et al. in [18]
presented visual codebooks based on Gabor features extracted
from local image patches.

The above-mentioned IQA algorithms all require human
subjective quality scores, i.e. “opinion-aware” (OA) BIQA
models. However, achieving MOS values are usually too time-
consuming and expensive. Consequently, “opinion-free” (OF)
BIQA which do not require human opinion scores for training
are desirable. In [21], Mittal presented a notion that certain
latent characteristics differ between original images. NIQE in
[22] is a perceptual model estimating distance of multivariate
Gaussian fit of distorted images between the original ones.
Xue et al. proposed in [23] a series of quality-aware centroids
of each quality level as codebooks to infer image quality
of each patch. In this paper, we further tackle this problem
by proposing a three-step learning based BIQA (TSBIQA)
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Fig. 1. Ten train images from Berkeley Segmentation database for
training.

algorithm by combining local and global features, describing
local image neighborhoods and the entire image respectively.

Previous works usually treating local and global features
individually, we therefore in this paper make an innovation
to combine the bottom-up and top-down statistics together.
To specify, our approach consists of the following three
components. (1) local feature extraction: according to Xue
et al.’s work above, we achieve local quality of each image
patch by referring to a class of quality-aware clustering (QAC)
centroids. (2) global feature extraction: shape and variance
of mean subtracted contrast normalized (MSCN) coefficient
distribution which varies with different distortions. (3) support
vector regression (SVR) based regression model. It needs to
highlight here that our work is a general model, which can be
adopted to various local and global features.

The remainder of this paper is organized as follows. Section
II illustrates the details of the proposed method. Experimen-
tal implementations and results are described in Section III.
Finally, Section IV concludes the paper .

II. OUR PROPOSED METHOD

Human intuition of images is the synthesis of local and
global perception. The average distortion influences the whole
human perception to some degree, while a terrible local part
will lower the overall image quality severely. The theory
has also been adopted in some IQA and saliency detection
literatures [24]-[25]. This part describes the details of our
work, including K-means based local feature extraction, and
NSS-based global feature extraction, along with Minkowski
pooling strategy and SVR regression.

A. Local feature extraction

Previous BIQA works rarely throughly consider image
local features, we therefore in this paper extract image local
information by estimating quality of overlapped image patches,
referring to the work of Xue et al. in [23], for its simpleness
and convenience. Out of the restriction of “opinion-free”,
we randomly select ten images from Berkeley Segmentation
Database (can be observed in Fig. 1), and generate four kinds
of distortions (JPEG, JPEG2000, white noise, and Gaussian
blur), and each at ten distortion levels for every single raw
image.

Fig. 2. The block of quality aware clustering procedure.

Given an image x and its corresponding distorted image
y, local patches xi and yi are generated by partitioning them
into overlapped patches. To specify local quality of yi, we use
FSIM [26] in this paper for its effectiveness and efficiency.
The quality of the i-th patch is obtained as si.

si(xi, yi) = FSIM(xi, yi) (1)

=
2PC(xi)PC(yi) + T1

PC(xi)2 + PC(yi)2 + T1
× 2G(xi)G(yi) + T2
G(xi)2 +G(yi)2 + T2

where T1 and T2 are positive constants for numerical stability,
and PC(xi) and G(xi) are the phase congruency and gradient
magnitude of patch xi. Further, the patches with worse quality
have been found to have higher correlation with human per-
ception, which has been proved in [27]. We hence take the
10% lowest quality patches. The normalized quality of patch
i is set as ci.

We then uniformly distribute ci into L levels, and group
patches having equal quality into the same quality group, w.r.t
Gl, l = 1, 2, ..., L. So far, a set of quality aware clustering is
generated. A high pass filter is then utilized to enhance the
clustering accuracy, as follows

hσ(r) = lr=0 −
1√
2πσ

exp(− r2

2σ2
) (2)

where σ is the scale parameter to control the shape of the
filter. Image details will be enhanced by convolving hσ with
the image. The filter is a special case of DoG filter when the
support size of the first Gaussian shrinks to 1.

Unsupervised feature learning method K-means is per-
formed to learn a set of quality-aware centroids {ml,k},
k = 1, 2, ...K. At last, L sets of centroids on L different quality
levels is obtained. The flowchart of getting the quality-aware
centroids is presented in Fig. 2.

B. Feature pooling

For test image y, the feature vector of overlapped patch yi
is fyi , i = 1, 2, ..., N . The nearest centroid of feature vector fyi
at quality level l is ml,ki . And the distance between them is
δl,i = ||fyi − ml,ki ||2. Obviously, the shorter the distance is,
the more likely yi should have the same quality with centroid
ml,ki . A weighted average rule is used to determine the final
quality of yi

zi =

∑L
l=1 qlexp(−δl,i/λ)∑L
l=1 exp(−δl,i/λ)

(3)

where λ is a parameter to control the decay rate of weight
exp(−δl,i/λ).
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Fig. 3. Histogram of normalized coefficients for a natural undis-
torted image and its various distorted versions from the TID2008
database. ORG: the original image. JP2K: JPEG2000 compression.
JPEG: JPEG compression. WN: additive white Gaussian noise. Gblur:
Gaussian blur..

The final quality map of y can be inferred with each
estimated quality of patch yi is available. Common used
strategies like max pooling and percentile pooling have been
released before. We adopt Minkowski pooling in this paper,
for the reason that Xue et al. claimed in [28] that image local
quality degradation can better reflect quality of image. The
Minkowski summation is given by

z =
1

N

N∑
i=1

zpi (4)

where N is the number of overlapped patches, and p is the
Minkowski exponent. We set p = {1, 2, 3, 4} here. More focus
will be shifted to lower quality regions with p increases. This
makes sense intuitively because human eyes tend to higher
distortion regions when most distortion regions concentrate in
a small region, and the subjective score will be lower than
direct average of the quality map.

C. Global feature extraction

In 1994, Ruderman claimed in his literature [29] the
regularity of natural scene statistics (NSS). To further explore
the characteristics of images in the spatial domain, we achieve
normalized luminance by subtracting the local mean and
performing divisive normalization, which is as follows.

ŷ(i, j) =
y(i, j)− µ(i, j)
σ(i, j) + T3

(5)

where T3 is a constant that prevents instabilities when denom-
inator tends to zero. Besides, i ∈ 1, 2,..., H , j ∈ 1, 2,..., W ,
and H and W are the height and width of image. The mean
µ and variance σ are specified as

µy(i, j) =
P∑

p=−P

Q∑
q=−Q

wp,qyp,q(i, j) (6)

σy(i, j) = (
P∑

p=−P

Q∑
q=−Q

wp,q(yp,q(i, j)− µy(i, j))2)1/2 (7)

Fig. 4. The framework of our proposed general model TSBIQA.

where w = {wp,q|p = -P,...,P, q = -Q,...,Q} is a 2D circularly-
symmetric Gaussian weighting function sampled out to 3
standard deviations and rescaled to unit volume.

The derived ŷ(i, j) is defined as mean subtracted con-
trast normalized (MSCN) coefficients. To better describe the
variation of MSCN to different distortions, we stochastically
choose an image from TID2008 [32] database, and visualize
the histogram of MSCN coefficients with various distortions,
as can be seen in Fig. 3. This discovery of variation of
natural statistics to distortions enables the implementation of
BIQA without the presence of reference images. Through
observation, generalized Gaussian distribution (GGD) is found
to be able to effectively capture a broader spectrum of distorted
image statistics, and the GGD with zero mean is given by

f(y;α, σ2) =
α

2βγ(1/α)
exp(−( |y|

β
)α) (8)

where

β = σ

√
(
γ(1/α)

γ(3/α)
) (9)

among which, γ is the gamma function,

γ =

∫ ∞
0

tα−1e−tdt α > 0 (10)

The shape parameter α takes control of the shape of the
distribution, while σ2 controls the variance. They are used to
capture image distortion. Natural images are thought to possess
many statistical properties in spatial domain. We adopt two
basic characters shape and variance in this paper.

D. SVR based regression

Support Vector Regression (SVR) is utilized here for
regression, which is used to learn a mapping from from
feature space to quality scores, generating a image quality
measure. SVR possess qualities like high performance in high-
dimensional spaces, over-fitting avoidance, and good general-
ization. We use the LIBSVM [30] package to implement the
SVR with a radial basis function (RBF) kernel. The framework
of the proposed general model TSBIQA is shown in Fig. 4.
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TABLE I. SROCC AND PLCC ON LIVE DATABASE.

SROCC JP2K JPEG WN BLUR ALL
PSNR 0.870 0.885 0.942 0.761 0.867
SSIM 0.939 0.946 0.964 0.907 0.910
QAC 0.868 0.938 0.952 0.918 0.877

TSBIQA 0.927 0.953 0.976 0.902 0.929

PLCC JP2K JPEG WN BLUR ALL
PSNR 0.873 0.876 0.926 0.766 0.853
SSIM 0.921 0.955 0.982 0.891 0.900
QAC 0.851 0.943 0.924 0.919 0.863

TSBIQA 0.930 0.964 0.982 0.886 0.932

TABLE II. SROCC AND PLCC ON TID2008 DATABASE.

SROCC JP2K JPEG WN BLUR ALL
PSNR 0.838 0.887 0.917 0.929 0.869
SSIM 0.962 0.932 0.847 0.959 0.905
QAC 0.890 0.887 0.717 0.856 0.861

TSBIQA 0.907 0.900 0.860 0.830 0.906

PLCC JP2K JPEG WN BLUR ALL
PSNR 0.888 0.880 0.945 0.914 0.845
SSIM 0.971 0.964 0.816 0.954 0.902
QAC 0.878 0.917 0.736 0.842 0.842

TSBIQA 0.909 0.939 0.856 0.828 0.901

III. EXPERIMENTAL RESULTS

A. Protocol

Four databases LIVE [31], TID2008 [32], CSIQ [33]
and TID2013 [34] are used as testing beds to validate the
effectiveness of our method.

1) LIVE database: it consists of 29 reference images each
with five different types of distortions - JPEG, JPEG2000
(JP2K), white gaussian noise (WN), Gaussian blur (BLUR)
and fast fading (FF). Each distortion has 5 to 6 distortion levels.
Image subjective score (DMOS) value is in the range of [0,
100].

2) TID2008 database: it involves of 25 reference images
and 1700 distorted images with 17 different distortions at 4
levels. MOS values are provided to every distorted image. The
higher MOS value, the better image quality.

3) CSIQ database: 30 reference images and derived 6
different types of distortions at 4 to 5 different levels are
consisted in this database. A total of 900 images are included.

4) TID2013 database: it consists of 25 original images and
3000 distorted images with 24 different distortions at 5 levels.
Similar to TID2008 database, MOS values are also included
for every distorted image.

The overlapped distortion types among these four databases
are JPEG, JP2K, WN and BLUR, so we only consider these
four distortion types in our experiment. They are also the most
commonly encountered distortions in digital images.

B. Implementation details

The results are obtained by 1000 train-test iterations with
randomly selected 10 images from Berkeley Segmentation
database [35], along with generated JPEG, JP2K, WN, and

TABLE III. SROCC AND PLCC ON CSIQ DATABASE.

SROCC JP2K JPEG WN BLUR ALL
PSNR 0.910 0.891 0.933 0.809 0.885
SSIM 0.962 0.954 0.912 0.960 0.934
QAC 0.888 0.912 0.865 0.852 0.858

TSBIQA 0.908 0.898 0.915 0.914 0.907

PLCC JP2K JPEG WN BLUR ALL
PSNR 0.861 0.887 0.946 0.771 0.856
SSIM 0.906 0.982 0.910 0.945 0.930
QAC 0.896 0.947 0.911 0.861 0.890

TSBIQA 0.930 0.957 0.929 0.932 0.935

TABLE IV. SROCC AND PLCC ON TID2013 DATABASE.

SROCC JP2K JPEG WN BLUR ALL
PSNR 0.884 0.919 0.923 0.915 0.907
SSIM 0.905 0.910 0.853 0.963 0.850
QAC 0.790 0.837 0.7414 0.846 0.805

TSBIQA 0.918 0.886 0.907 0.874 0.902

PLCC JP2K JPEG WN BLUR ALL
PSNR 0.917 0.917 0.949 0.914 0.891
SSIM 0.915 0.931 0.859 0.958 0.829
QAC 0.809 0.869 0.794 0.847 0.805

TSBIQA 0.935 0.938 0.910 0.868 0.907

BLUR distorted images with distortions at ten different levels.
LIVE, TID2008, CSIQ and TID2013 databases are used as
testing sets. We use linear ε-SVR for regression in this part.
For both training and testing images, only distorted images are
used. Additionally, with 1000 times training and testing, the
median results are reported finally.

C. Evaluation

Person linear correlation coefficient (PLCC), Spearman
rank-order correlation coefficient (SROCC) are used to eval-
uate our system performance. PLCC can be considered as a
measure of prediction accuracy, while SROCC computes the
monotonicity by ignoring the relative distance between the
data. The higher SROCC and PLCC values indicate better
performance in terms of correlation with human opinion. A
four-parameter logistic function is chosen to fit the scores of
our method to subjective scores [36]

Quality(z) =
β1 − β2

1 + exp(−(z − β3)/β4)
+ β2 (11)

where z is the input score, and Quality(z) is the mapped
score, and β1 to β4 are free parameters to be determined during
the curve fitting process. Two traditional FR-IQA metrics peak-
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [37], and one OF-BIQA metric QAC [21] are used as
reference to validate TSBIQA. Experiment results of SROCC
and PLCC values on LIVE, TID2008, CSIQ, and TID2013
databases on four specific distortions and the whole datasets
are tabulated in Table I - Table IV respectively.

From Table I-IV, we can clearly see that our model
achieves remarkable results on the testing four subjective
image databases. Note that FR-IQA algorithms are hardly
competed with BIQA due to the requirement of the lossless
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TABLE V. THE PERCENTAGE OF PERFORMANCE IMPROVEMENT
OF TSBIQA THAN QAC ACCORDING TO SROCC (%).

JP2K JPEG WN BLUR ALL
LIVE 6.797 1.599 2.521 -1.742 5.929

TID2008 1.910 1.466 19.944 -3.037 5.227
CSIQ 2.252 -1.535 5.780 7.277 5.711

TID2013 16.203 5.854 22.336 3.310 12.050

image, but the proposed TSBIQA model is superior to FR
PSNR, and matchable with the popular FR SSIM. Further,
TSBIQA has achieved remarkable improvements of 5% higher
than QAC on LIVE, TID2008, CSIQ and TID2013 databases
in terms of SROCC value, as listed in Table V, especially
performing significantly better on TID2013 database. From
the performance evaluations, it can be found that QAC works
better on TID2008 than TID2013, which is probably explained
by the fact that QAC is not good at capturing low image
distortions which are contained in TID2013 database. For each
single distortion type, TSBIQA also attains favorable results.
It only achieves a little bit lower than QAC on BLUR datasets
on LIVE, TID2008 databases, and on JPEG datasets on CSIQ
database. However, we conclude that even with little features
provided, our paradigm achieves promising performance.

IV. CONCLUSION

We propose a new effective and efficient three step (TS-
BIQA) method in this paper by combining local and global
features. K-means based quality aware clustering constructs
centroids of each image level to infer image quality of each
patch. Additionally, two natural scene statistics, shape and
variance of MSCN, are used as global features to express the
overall quality of the image. SVR is adopted at last to generate
a regression model. Importantly, the measure we propose in
this paper is a general framework, and in other words, the
local or global features can be flexibility replaced in this kind
of application.
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